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SnSe, nanocrystals coupled with hierarchical porous
carbon microspheres for long-life sodium ion battery

anode
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ABSTRACT Tin selenides have been attracting great atten-
tion as anode materials for the state-of the-art rechargeable
sodinm-ion batteries (51Bs) due to their high theoretical ca-
pacity and low cost. However, they deliver unsatisfactory
performance in practice, owing to their intrinsically low
conductivity, sluggish kinetics and volume expansion during
the charge-discharge process. Hemein, we demonstrate the
synthesis of SnSe; nanocrystals coupled with hierarchical
porous carbon (Sn8e; NCs/C) microspheres for boosting SIBs
in terms of capacity, rate ability and durability. The unique
structnre of SnSe, NCs/C possesses several advantages, in-
cluding inhibiting the agglom eration of SnSe;, nanoparticles,
relieving the volume expansion, accelerating the diffusion
kinetics of electrons/ions, enhancing the contact area between
the electrode and electrolyte and improving the structural
stability of the composite. As a result, the as-obtained SnSe,
NCs/C microspheres show a high reversible capacity
(565 mA h E't after 100 cycles at 100 mA Ed]l, excellent rate
capability, and long cycling life stability (363 mAhEd at
1A g‘t after 1000 cycles), which represent the best perfor-
mances among the reported 51Bs based on SnSe-based anode
materials,

Keywords: tin selenides, nanocrystals, hierarchical, sodium-ion

batteries

INTRODUCTION
As a promising alternative to lithium-ion batteries (LIBs),
sodium-ion batteries (SIBs) have recently attracted

1,4.5*%

growing interest particularly for large-scale energy sto-
rage applications owning to the abundance and uniform
distribution of sodium resource in the earth crust [1-5].
However, their electrochemical performances are severely
hindered by severe volume variation and slow kinetics
during insertion/extraction processes of sodium ions
(Ma") due to the intrinsic larger ionic radius and heavier
molar mass of sodium ion than lithium ion [6-11]. Par-
ticularly, most of anode materials that are suitable for
LIBs could not be applied directly in SIBs [12-15].
Therefore, the exploitation of excellent anode materials
with high specific capacity, outstanding Na-storage re-
versibility and excellent rate capability is urgently desir-
able but remains a challenge.

Recently, Sn-based materials, such as S5n0; [16-19], 5nS
[20,21], SnS, [22-24], and SnP, [2526)], have attracted
tremendous attention as promising anode materals for
both LIBs and SIBs. As earth-abundant, environmental
friendly, and chemically stable materials, tin selenides
(including 5nSe and SnSe;) have also been regarded as
attractive anode materials for SIBs, yet seldom studied till
now [27,28]. SnSe, is highlighted due to its unique layered
structure and high interlayer spacing (6.14 A for SnSe, vs.
the diameter of 1.02 A for Na'), which provides a fast
channel for the transfer of ions and electrons [29,30].
Particularly, SnSe; as an anode material for SIBs de-
monstrates a high theoretical reversible capacity of
756 mAhg ' [31). However, similar to other Sn-based
materials, SnSe; is known for several drawbacks including
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the low electrical conductivity, huge volume variation and
high mechanical stress/strain upon cycling, inevitably
resulting in serious kinetic problems, making it difficult
to fully take advantage of the conversion reactions, and
thus leading to limited reversible capacity, cycle stability,
and rate capability in practical application [29-32].

To solve these issues, herein, we report a facile strategy
to prepare 5nSe, nanocrystals coupled with hierarchical
porous carbon (SnSe; NMCs/C) microspheres. First, uni-
form stanniferous solid precursor microspheres were
synthesized by a one-pot solvent-thermal method in the
presence of stannous chloride and ascorbic acid in a
mixed isopropanol/glycerol solution, which were subse-
quently transferred into 500, NCs/C microspheres by the
thermal treatment in Ar. Then, the as-prepared SnO,
NCs/C microspheres underwent a simple selenization
reaction to form SnSe, NCs/C microspheres, which were
particularly attractive for solving the problems related to
SIBs. The SnSe, NCs/C microspheres inhibits the ag-
glomeration of SnSe, nanocrystals by separating them
from each other, and greatly improves the conductivity as
well as availability of electrode materials. The 3D hier-
archical porous structure not only enhances the contact

area between the electrode and electrolyte, but also helps
to suppress the volume expansion during charge-dis-
charge processes. The SnSe; nanocrystals are small and
uniformly anchor on the carbon networks, and thus ac-
celerate the diffusion kinetics of electrons/ions and im-
prove the stability of the structure. Benefiting from these
structural advantages, the SIBs based on the as-prepared
SnSe, NCs/C microspheres exhibit a high reversible spe-
cific capacity of 565 mAh g ' at 100 mA g ', an excellent
cycling stability (363mAhg ' at 1 Ag ' after 1000 cy-
cles), and superior rate capability.

RESULTS AND DISCUSSION

Morphological and structural characterization
The design and synthetic process of the SnSe, NCs/C
microspheres is schematically illustrated in Fig. la.
Firstly, Sn-precursor (5n-P) microspheres were facilely
prepared by a one-pot solvent-thermal method in the
presence of stannous chloride and ascorbic acid in a
mixed isopropanol/glycerol solution. Subsequently, the
uniform Sn0, NCs/C microspheres were formed by an-
nealing those Sn-precursor microspheres in Ar. Finally,

Figure 1 (2) Schematic illustration of the formation process of SnSe, NCs/C microspheres. SEM images of the as-synthesized Sn-precursor mi-
crospheres (b, e); Sn0, NCs/C microspheres (g, f) and SnSe, NCs/C microspheres (d, g).
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the SnSe; NCs/C microspheres were obtained via simple
selenization in Ar atmosphere.

The morphologies of the as-synthesized Sn-P micro-
spheres, 5n0, NCs/C microspheres, and SnSe, NCs/C
microspheres were investigated with the scanning elec-
tron microscope (SEM) as shown in Fig. 1b-g In Fig. 1b,
e, the Sn-P particles have a size of ~2 pm with an ideal
microsphere morphology. After the annealing treatment
in Ar, the 5n-P microspheres are transformed to Sn0,
MNCs/C microspheres, with the morphology and particle
size unchanged (Fig. 1c, f). These 5n0, NCs/C micro-
spheres exhibit the hierarchical structure consisting of
primary nanocparticles. After the selenization, the SnSe,
MNCs/C microspheres still retain the spherical morphology
(Fig. 1d, g). Fig. 2a shows a typical SnSe, NCs/C micro-
sphere with the corresponding energy dispersive X-ray
spectrum (EDS) elemental mapping shown in Fig. 2b.
The atomic ratio of Sn/Se is about 1:2, confirming the
chemical composition of SnSe, NCs/C. All of the ex-
pected elements of the composite can be recognized.
Transmission electron microscopy (TEM) and high-re-

solution TEM (HRTEM) were carried out to further in-
vestipate the microstructure of the SnSe, NCs/C. As
shown in Fig. 2c, the SnSe, NCs/C microspheres have a
diameter of approximately 2 pm, in accordance with the
SEM results. A highly porous hollow interior structure
densely dispersed with small nanoparticles (5nS5e;) can be
confirmed by the non-uniform contrast. The HRTEM
image in Fig. 2d shows that the SnSe, NCs with the size of
nanometers (~10nm) are embedded in the carbon ma-
trix. The clear lattice fringes indicate their good crystal-
linity. The resolved lattice fringes of these SnSe, NCs with
an interplanar spacing of 0.29 nm correspond to (101)
crystal facets of SnSe,. The compact and robust SnSe,
MNCs/C microspheres assembled by spherical nano-
particles are able to increase the contact area between the
electrode and electrolyte, relieve the volume expansion
during the insertion/extraction of Na', and accelerate the
diffusion kinetics of Na-ion due to the shortened Na
diffusion distances.

The crystal structures of the as-synthesized Sn-P mi-
crospheres, Sn(y NCs/C microspheres, and SnSe, NCs/C

1

Figure 2 (a) Typical SEM image of SnSe, NCs/C microspheres and the corresponding elementsl mapping of (b) tin, selenium, and carbon elements.

{c) TEM and {d) HRTEM images of Sne, NCs/C.
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microspheres were characterized by the powder X-ray
diffraction (PXRD) (Fig. 3a), showing the Sn-P micro-
spheres with low crystallinity. After annealing in Ar at
S500°C for 2 h, the as-prepared 5n-P microspheres can be
converted to S5n0, (JCPDS No. 41-1445). In addition, for
the PXRD of final products, all Bragg peaks can be in-
dexed to the hexagonal phase SnSe, (JCPDS Mo, 23-
0602), suggesting that the S5n0, is completely converted
into the phase-pure SnSe, via the thermal selenization.
Furthermore, no significant carbon diffraction peaks are
observed, suggesting its amorphous state. Fig. 51 presents
the hexagonal layered crystal structure of SnSe;, The
specific surface area (58A) of the S5nSe, NCs/C micro-
spheres was further characterized with the Brunauer-
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Emmett-Teller (BET) analysis (Fig. 3b). The SnSe, NCs/C
possesses a large SSA of 73.9m" g ' and a high pore vo-
lume of 0.068 cm” g ', in good agreement with TEM and
HRTEM results. The SnSe, NCs/C with large SSA is
beneficial to increasing the contact area between the
electrode and electrolyte, improving electrolyte transfer
and carrier transport kinetics, and thus boosting the
performance of 5IBs. The amorphous carbon content in
the SnSe; NCs/C is about 15 wtl, as measured by in-
ductively coupled plasma mass spectrometry (ICP). As
control experiment, the bulk SnSe, was synthesized by
annealing 5n with Se power in Ar at 500°C for 2 b, and
characterized with the PXRD (Fig. 52) and SEM (Fig. 53).

In order to further investigate the chemical composi-
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Figure 3 {a) PXRD patterns of the as-synthesized Sn-precursor, Sn0; NCs/C, and SnSe; BCo/C microspheres. (b) Nitrogen adsorpton-desorption
isotherms and pore size distribution (the inset) of SnSe, NCs/C microspheres XPS spectra of the SnSe, NCs/C microspheres survey (c), C 1s (d), Sn 3d

{e), and Se 3d (fl
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tion and states of the elements on the surface of SnSe,;
NCs/C, X-ray photoelectron spectroscopy (XPS) was
carried out (Fig. 3c~f). The survey spectrum demonstrates
the presence of 5n, Se, and C in the SnSe, NCs/C
(Fig. 3c). The high resolution C 1s spectrum in Fig. 3d
shows three peaks at 284.7, 285.3, and 288.7 eV, corre-
sponding to sp’-hybridize C, -C-Se, and C=0, respec-
tively [29]. As shown in Fig. 3e, the peaks located at 486.6
and 495.1 eV can be assigned to Sn 3ds;; and Sn 3d,,,
respectively. In accordance with the fitting results, Sn™
valence state (484.8 eV) only occupies for a very small
portion compared with the intense peak of Sn'* valence
state at 486.6 eV, suggesting that Sn"' rather than $n™' is
the predominant form of Sn in the as-prepared sample
[33]. In addition, the binding energies of 53.9 and 54.8 eV
comespond well with Se 3d,, and Se 3d,, (Fig. 3f),

confirming the oxidation state of &’ [34].

Electrochemical characterization

The electrochemical performance of the SnSe, NCs/C
sample was investigated in 2032 coin cells via assembling
the electrode into sodium half-cell. Fig. 4a presents the
initial five cyclic voltammogram (CV) curves of the 5nSe;
NCs/C composite in the voltage range of 0.01-3.0 V (vs.
MNa'fMa) at the scan rate of 0.1 mVs . In the initial
cathodic sweep, three strong peaks at 167, 136 and
0.98 V, which disappear in the following four cycles, can
be attributed to the initial insertion of sodium jon in
SnSe, interlayers with the formation of MNa, SnSe, (Equa-
tion (1)), similar to the lithium and sodium insertion of
SnS, layer [35,36]. The sharp peak at 0.67 V in the first
cycle decreases in the second cycle, which is caused by the
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Figure 4 (a) CV curves of the SnSe, NCs/C in the first five cycles at a scan rate of 0.1 mV s '. (b) Charge-discharge profiles for the SnSe, NCs/C at
100 mA g ' in the first five cycles. () Cycling performances of the SnSe; NCs/C and bulk SnSe, at 100 mA g ' for 100 cyces. (d) Rate performances of
the SnSe; NCs/C and bulk SnSe, at vadous current densities from 0110 1 A g ' (e} CV curve with the pseudocapacitive contribution shown in the
olive region &t 3 scan rate of 5mV s ' (f) The bar chart shows the contribution ratios of capacitive capacity and diffssion-limited capacity at various
scan rates. (g) Long-term cyde performance of SnSe, NCs/C at LA g ' for L0040 cydes.
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reduction of SnSe; to metallic Sn, the formation of Na,Se,
and the formation of irreversible solid electrolyte inter-
phase (SEI) layer (Equation (2)) [37,38]. During the initial
anodic sweep, the broad peaks at near 0.24 and 1.08 V are
attributed to the conversion process from metallic 5n to
Na,7s5n (Equation (3)), while the peak at 1.55 V is related
to the restitution process with the formation of SnSe,
[29,39]. Furthermore, the overlapping CV curves between
the fourth and fifth cycles suggest the potentially excellent
cycling capability of 5nSe, NCs/C.

Based on the previous reports on the SnSe, anode for
Ma storage, the initial charging process can be attributed
to the intercalation and conversion reactions [29):
xMa' + SnSe, + xe —Na,SnSe,, (1)
4Na" + SnSe, + 4e —2Na 5 + 5n. 2)

The subsequent charging/discharging cycles were
characterized by reversibly alloying and de-alloying Sn
and MNa, »5n [29]:

Sn + 3.75 Na' + 3.75e —+Na,,,5n. (3)

Fig. 4b shows the typical galvanostatic charge-discharge
profiles of the SnSe; NCs/C electrode for the first five
cycles in the voltage range of 0.01-3.0V at a current
density of 100 mAg '. The charge-discharge voltage
plateaus, comesponding to the different stage phase
transformations, can be well distinguished, in good
agreement with the CV results. For instance, the initial
discharge voltage plateau located at 1.67 V, which dis-
appears in the following cycles, is ascribed to the irre-
versible intercalation of sodium ions into SnSe,
interlayers. In addition, the broad plateaus at 0.45-0.95 V
(for the discharge process) and 0.85-1.55V (for the
charging process) represent the contribution from the
reversible sodinm ion insertionfextraction.

The first discharge and charge steps deliver specific
capacity values of 885 and 702 mAhg % respectively,
comesponding to a high initial coulombic effidency (CE)
of 79%, and the capacity loss is considered to be cansed
by the formation of irreversible SEI film on the surface of
the electrode and the decomposition of electrolyte. Fur-
thermore, the charge-discharge curves nearly overlap
with each other except for the first two cycles, which
indicates the high reversibility of the SnSe, NCs/C as an
anode material for SIBs. One most impressive feature of
the SnSe; NCs/C electrode is the cyclicity. As shown in
Fig. 4c, the 5nSe, NCs/C electrode achieves a stable ca-
pacity of 565 mA h g ' after 100 cycles at a current den-
sity of 100 mA g ', accounting for 96.4% of the capacity
of the 7° cycle, while the bulk SnSe, electrode only retains
a capacity of 136 mA g '. These results indicate that the

488 @ Science China Press and Springer-Verag GubH Germany, part of Springer Nature 2019

anode materials with high conductivity and low volume
change are favored to enhance the cycle performance and
reversible capacity of S5IBs. Fig. 54 shows the electro-
chemical impedance spectroscopy (EIS) measurements of
the bulk SnSe, and SnSe, NCs/C anode at open circuit
voltage and after the 20 cycle. It is shown that the dia-
meter of the semicircle for SnSe; NCs/C anode is much
smaller than that of the bulk SnSe, anode in SIBs after the
20" cyde, suggesting lower charge-transfer resistance
(R.,), which can be ascribed to the good conductivity and
stable electrodefelectrolyte interface.

High rate capacity is a key parameter to assess the
electrochemical performance of electrode materials, and
the Sn5e, NCs/C electrode exhibits a robust rate cap-
ability. As shown in Fig. 4d, the SnSe; NCs/C demon-
strates a capacity of S48 mA hg Yata galvanostatic rate
of 0.1 Ag ', and 472, 414, and 366 mA hg ' at rates of
0.2, 0.5, and 1A g ', respectively. Moreover, when the
current density is restored to 0.1 Ag ', the reversible
capacity can revert to 53 mA hg ', indicating the good
reversibility. However, the rate performance of the bulk
SnSe, anode was inferior, only showing the capacities of
281,206, 121, and 62 mA h g ' under rates of 0.1, 0.2, 0.5,
and 1 Ag ', respectively. When the current density was
set back to 0.1 Ag', only a reversible capacity of
167 mA hg ' was preserved. Compared with the bulk
SnSe; electrode, the 5nSe, NC/C composite electrodes
demonstrate a high revemible specific capacity and an
excellent cyclic performance (Fig. 4c), which can be at-
tributed to the following aspects: (1) the SnSe, NCs/C
microspheres inhibit the agglomeration of SnSe, nano-
crystals by sepamting them from each other, and also
greatly improve the conductivity as well as availability of
electrode materials. (2) The 3D hierarchical porous
structure not only enhances the contact area between the
electrode and electrolyte, but also helps to suppress the
volume expansion during the charge-discharge processes.
(3) The SnSe; nanocrystals are small and uniformly an-
chor on the carbon networks, and thus accelerate the
diffusion kinetics of electrons/fions and improve its
structural stability.

In order to investigate the reason why the SnSe, NCs/C
electrode has such an excellent rate capability, the charge
storage behavior and reaction kinetics were conducted by
correlating the currents (i) with sweep rate (v) based on
Equation (4) [40]:
i=ar, (4)
where b reflects the charge storage behavior, as shown in
Fig. 85. Typically, b indicates the diffusion controlled
process (battery behavior), and the b value of 1.0 means

April 2020 | Vol 63 No.4
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the surface capacitance controlled process (capacitor be-
havior). Fig. 56 shows the linear relationships between
log(i} and log(v). The b values of the anodic peak of SnSe,
NCs/C is 0.86, indicating that Na-ion storage is mainly
controlled by surface capacitance in the discharge pro-
cess. The b values of the three cathodic peaks of SnSe,
MNCs/C are calculated to be 0.65, 0.62, and 0.75, implying
the diffusion and surface capacitance controlled behavior
coexisted in the charge process. To further quantify the
storage contribution for SnSe, NCs/C, the current (i) was
separated at a fixed voltage (V) based on the following
equation [41-53]:

i(V) = kv + k™™, (5)
where kv stands for the capacitive contribution, whereas
k,v'" represents the diffusion-controlled contribution,
and the constants &, and k, are obtained from the linear
plots of (Vv vs. v at a certain voltage. As shown in
Fig. de, the capacitive capacity contribution to the total
charge for SnSe, NCs/C electrode is 60.6% at a scan rate
of 5mV s . Moreover, the capacitive contribution in CV
curve at other scan rates is shown in Fig. 7. Fig. 4f shows
the corresponding bar chart of the contribution ratios of
capacitive behavior at various scan rates, which reveals
that the capacitive contribution dominates gradually with
the increase of scan rate, suggesting the noticeable en-
hancement in the rate performance of the SnSe, NCs/C
electrode. As shown in Fig. 4g, the SnSe, NCs/C electrode
exhibits excellent long-term cyding performance, re-
taining a capacity of 363 mAh g ' over 1000 cycles at a
high current density of 1 A g ', which represents the best
superior cycle stability in all the reported tin selenides
based anode materials for SIBs (Table 51).

CONCLUSION

In summary, 5nSe, nanocrystals coupled with hierarchical
porous carbon microspheres can be used as a remarkable
anode material for SIBs. The unusual structural and
compositional features of the as-obtained SnSe, NCs/C
can inhibit the agglomeration of SnSe; nanoparticles,
relieve the volume expansion, accelerate the diffusion
kinetics of electronsfions, enhance the contact area be-
tween the electrode and electrolyte, and improve the
structural stability of the compaosite. The SIBs with SnSe,
NCs/C microspheres as anode materials show superior
electrochemical properties (565 mA hg = after 100 cydles
at 100mA g ), excellent rate capability, and ultralong
cycling stability (363 mAhg ' at 1A g after 1000 cy-
cles). This study provides valuable guidance for rationally
developing advanced electrode materials for high per-

Apri 2020 | Vol63 No.d

formance SIBs.
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